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Vibrational density of states �VDOS� in a supercooled polydisperse liquid is computed by diagonalizing the
Hessian matrix evaluated at the potential energy minima for systems with different values of polydispersity. An
increase in polydispersity leads to an increase in the relative population of localized high-frequency modes. At
low frequencies, the density of states shows an excess compared to the Debye squared-frequency law, which
has been identified with the boson peak. The height of the boson peak increases with polydispersity and shows
a rather narrow sensitivity to changes in temperature. While the modes comprising the boson peak appear to be
largely delocalized, there is a sharp drop in the participation ratio of the modes that exist just below the boson
peak indicative of the quasilocalized nature of the low-frequency vibrations. Study of the difference spectrum
at two different polydispersity reveals that the increase in the height of boson peak is due to a population shift
from modes with frequencies above the maximum in the VDOS to that below the maximum, indicating an
increase in the fraction of the unstable modes in the system. The latter is further supported by the facilitation
of the observed dynamics by polydispersity. Since the strength of the liquid increases with polydispersity, the
present result provides an evidence that the intensity of boson peak correlates positively with the strength of the
liquid, as observed earlier in many experimental systems.
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I. INTRODUCTION

A glass behaves mechanically like a solid but structurally
like a liquid with relaxation times varying from a few min-
utes to several centuries. The elasticity of a solid is described
in terms of phonons, which are quantized vibrational excita-
tions. Propagating acoustic phononlike excitations have been
observed in glasses and glass-forming liquids �1�. However,
their description is rendered difficult since glasses lack the
translational invariance of crystalline solids. A ubiquitous
feature in the physics of glasses is the anomalous behavior of
the low-frequency part of the vibration spectrum and the cor-
responding thermal properties �2�. While the origin of the
linear low-temperature specific heat is commonly attributed
to the existence of double-well potentials or two-level sys-
tems, there is a considerable debate about the so-called bo-
son peak �3,4�. This peak shows up in the vibrational density
of states �VDOS�, g��� as an excess contribution, compared
to the usual Debye behavior �g�����2�. It is called boson
peak because the temperature-dependence of its intensity
scales roughly with the Bose-Einstein distribution. In addi-
tion to the presence of boson peak �BP� �or excess density of
states� at low frequencies, one also observes a high-
frequency exponential tail �5� in the reduced density of states
spectrum.

The interpretation of the boson peak has been a challenge
to experimentalists and theoreticians and is a subject of con-
troversial discussions. While some authors attribute it to
local/quasilocal vibrations �3,6–8�, some others attribute it to
collective motions �5,9�. Optical heterodyne-detected optical
Kerr effect data on supercooled acetylsalicylic acid and dibu-

tylpthalate display highly damped oscillations with a period
of a few picoseconds as the temperature is reduced to and
below the mode coupling theory temperature, TMCT �10�. The
authors interpret this as the time domain signature of the
boson peak and explain that the increased translational-
rotational coupling is responsible for the boson peak as T
�TMCT. A universal mechanism of the BP formation in
glasses has been proposed based on the concept of interact-
ing quasilocal oscillators �8�. Boson peak has also been ex-
plained in terms of the affine-nonaffine crossover at a certain
mesoscopic length scale �11�. It has also been interpreted as
the signature of a phase transition in the space of the station-
ary points of the energy, from a minima-dominated phase
�with phonons� at low energy to a saddle dominated phase
�without phonons� �12�. The boson peak has also been linked
to those motions giving rise to the two-level-like excitations
seen at still lower temperatures �13�. A recent numerical
study �14� has shown that the frequency of boson peak is
equal to the Ioffe-Regel limit for transverse phonons above
which transverse phonons do not propagate, and the boson
peak is attributed to transverse vibrational modes associated
with defective soft structures in the disordered state.

Various groups have studied the vibrational dynamics of
supercooled liquids �15–18� via computer simulations, where
the focus has been on the characteristics of the high-
frequency or low-frequency vibrational modes. The main
emphasis of these studies have been on the collective/local
nature of the vibrational modes. In this study, we investigate
the vibrational dynamics and boson peak in a polydisperse
Lennard-Jones �LJ� liquid which is one of the simplest model
systems that exhibit glass transition and can be conveniently
studied via both experiments �19,20� and computer simula-
tions as the size distribution of particles prevents crystalliza-
tion �21–23�. The rest of the paper is organized as follows. In
Sec. II, we describe the model and computational details. In
Sec. III, we present our results and give detailed discussions
on the same. We give our concluding remarks in Sec. IV.
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II. COMPUTATIONAL DETAILS

Micro canonical ensemble molecular dynamics �MD�
simulations are carried out in three dimensions on a system
of Lennard-Jones particles of mean diameter �̄ with polydis-
persity in both size and mass. The polydispersity in size is
introduced by random sampling from the Gaussian distribu-
tion of particle diameters �,

P��� =
1

�2��
exp�−

1

2
�� − �̄

�
�2	 . �1�

The standard deviation � of the distribution divided by its
mean �̄ gives a dimensionless parameter, the polydispersity
index, S

S =
�

�̄
. �2�

The mass mi of particle i is scaled by its diameter,

mi = m̄��i

�̄
�3

. �3�

We have chosen m̄=1.0. The simulations are carried out at
different values of the polydispersity index, S but at fixed
volume fraction, �=0.54. Three different system sizes were
chosen, N=256, 500, and 864. The results are found to be
qualitatively the same for the three different system sizes
studied.

The interactions between the particles are given by the
shifted-force LJ potential

Uij = 4�ij���ij

rij
�12

− ��ij

rij
�6	 , �4�

where i and j represent any two particles and

�ij = ��i + � j

2
� . �5�

The LJ interaction parameter �ij is assumed to be the same
for all particle pairs and set equal to unity. The particles are
enclosed in a cubic box and periodic boundary conditions are
used. The cutoff radius rc is chosen to be 2.5�̄. The time step
used for integrating the equations of motion is 0.001. All
quantities in this study are given in reduced units �length in
units of �, temperature in units of �

kB
and time in units of 	

= � m̄�̄2

� �1/2�.
The vibrational density of states is obtained from the nor-

mal mode analysis by solving the secular equation,


F − �2I
 = 0. �6�

Here F is the mass-weighted potential energy matrix �also
known as the Hessian matrix�,

Fij =
Vij

�mimj

. �7�

Equation �6� can be solved to yield a set of eigenvalues �the
square of the vibrational frequencies, �2� and corresponding
eigenvectors �normal mode displacement vectors�, ei. From
the equilibrium liquid configurations generated by the MD

simulations, one constructs the potential energy minima or
the inherent structure via conjugate gradient minimization.
From the potential energy minima, one generates the Hessian
matrix, the diagonalization of which would yield the eigen-
values and the eigenvectors. The normal modes thus ob-
tained are called the quenched normal modes �QNM�.

Instantaneous normal modes �INM� can be obtained by
diagonalizing the Hessian constructed for the equilibrium
liquid configurations. Since the instantaneous liquid configu-
ration is not necessarily a potential energy minimum, one
gets both unstable modes �negative eigenvalues or imaginary
frequencies� and stable modes �positive eigenvalues�.

III. RESULTS AND DISCUSSION

A. Instantaneous normal modes

In Fig. 1, we plot the instantaneous normal mode density
of states for different values of temperature T. The imaginary
modes are shown in the negative frequency region as per
convention. As the temperature decreases, the fraction of the
unstable modes decreases whereas that of the stable modes
increases. At low temperature �T=0.40�, the fraction of the
unstable modes is considerably less, indicating that most of
the particles are located near the potential energy minima
most of the time. The polydispersity-dependence of the INM
spectra is shown in Fig. 2�a�. The S=0.20 system has rela-
tively higher number of high-frequency modes for both the
stable and unstable branches. The higher fraction of stable
high-frequency modes ��
50.0� for S=0.20 is due to the
mass polydispersity effect and disappears when the latter is
switched off �see Fig. 2�b��. The polydispersity effects on
vibrational modes are discussed in detail in Sec. III B.

B. Quenched normal modes and polydispersity effects on
vibration spectra

The configuration-averaged vibrational density of states,
g��� for the quenched normal modes is shown in Fig. 3 for
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FIG. 1. �Color online� Instantaneous normal mode spectra for
different values of T. Data shown for S=0.10 system and system
size, N=256. Unstable modes are shown on the negative frequency
axis, i.e., ��sgn�����
�
 �24�.
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different values of polydispersity index, S. The width of the
bin chosen to build the histogram is 0.50. The VDOS is
rather featureless as has been observed by Rahman et al. �25�
for single-component Lennard-Jones system. In Fig. 4, we
show the quenched normal mode density of states for S
=0.20 system for different values of temperature of the par-
ent liquid. The rather narrow sensitivity of the quenched nor-
mal mode spectra to temperature is to be contrasted with the
INM spectra obtained from equilibrium liquid configurations
�see Fig. 1�.

Polydispersity has three noticeable effects on the vibra-
tional density of states. First, as polydispersity increases, the
number of low-frequency modes increases with a corre-

sponding decrease in the number of high-frequency modes
�see Fig. 5�. Because of these compensating changes occur-
ring in the high- and low-frequency regions, one observes a
crossover in the density of states between S=0.10 and S
=0.20 systems. For the data shown in Fig. 5, this happens at
a frequency ��12.0 for systems with mass polydispersity
and ��16.0 for systems without mass polydispersity. The
crossover is reminiscent of an isosbestic point.

Second, when mass polydispersity is present, there is a
second crossover point in the density of states between S
=0.10 and S=0.20 systems at a frequency, ��32 �Fig. 5�a��.
For frequencies higher than this value, there is an excess of
high-frequency modes that increases with S. This is best seen
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FIG. 2. �Color online� Instantaneous normal mode spectra at T
=0.80 for S=0.10 and S=0.20 systems �a� with mass polydispersity
�b� without mass polydispersity.
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FIG. 3. �Color online� Quenched normal mode spectra at three
different values of polydispersity index, S. The data is for T=0.50.
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FIG. 4. �Color online� Quenched normal mode spectra at differ-
ent values of T; data is for S=0.20.
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FIG. 5. �Color online� �a� g��� for S=0.10 �thick lines� and S
=0.20 �dashed lines� systems and their difference �inset� �b� Same
as �a� but for S=0.10 and S=0.20 systems without mass polydis-
persity. Data shown for a system of N=256 particles.
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in the semilog plot of g��� in Fig. 6. The plot clearly shows
there is a substantial increase in the number of high-
frequency modes with S. This feature disappears in the ab-
sence of mass polydispersity as shown in Fig. 7. Thus the
excess high-frequency modes �whose fraction increases with
polydispersity� is due to the mass polydispersity effect rather
than size polydispersity effect. In Sec. III C, we show that
the high-frequency vibrations are all localized.

Third, the vibrational density of states spectrum becomes
narrower with polydispersity. In Fig. 8, we plot the full width
at half maximum �FWHM� of g��� for S=0.10 and S=0.20

as function of T. The FWHM decreases sharply with S but
shows only a weak increase with temperature.

C. Polydispersity and localization of normal modes

The localization properties of the normal modes can be
quantified via the participation ratio �PR�, which is a mea-
sure of the number of particles participating in a given vibra-
tional mode. The participation ratio of mode i is defined as
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FIG. 9. �Color online� Participation ratio �PR� of the modes for
system sizes, �a� N=256 and �b� N=864. PR gives the number of
particles participating in a given mode. The data is shown for dif-
ferent S at T=0.50. The plot shows that as S increases, the number
of particles participating in a given mode decreases for any given
frequency. Dashed line indicates the position of the boson peak.
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FIG. 6. �Color online� Semilog plot of density of states. The
data is for T=0.50. As S increases the number of high-frequency
modes increases. The high-frequency modes are localized modes
�see Fig. 9�.
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FIG. 7. �Color online� Semilog plot of density of states for dif-
ferent S without mass polydispersity. �i.e., all masses set equal to
unity, mi=1.0�. The data is for T=0.50 and N=256.
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FIG. 8. �Color online� Full width at half maximum, FWHM for
S=0.10 and S=0.20 as a function of T.
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PRi = �N
=1

3N

�ei
 . ei

�2	−1

�8�

Thus, PR is of the order of 1
N for localized modes and is on

the order of 1 for extended modes. In Fig. 9, the participation
ratio of the modes is plotted. The averaging is done over
modes corresponding to eigenvalues in a histogram bin of
width 0.50. For �
30.0, the participation ratio is very low.
Thus, the high-frequency tail of the normal mode spectrum is
due to localized vibrations. This is depicted in Fig. 10, where
we plot the individual particle displacements in an eigen-
mode from the high-frequency side as well as one near the
frequency at which g��� shows a maximum. The figure
clearly shows that the high-frequency vibrations are local-
ized on lighter particles. In a crystalline solid, localized vi-
brations occur due to the presence of very light impurity
atoms or interstitial atoms. It has been shown that when the
mass of the impurity atom in a crystal is smaller than that of
the other particles, the vibrations do not propagate through
the system but gets localized around the impurity particle
�26�.

In the frequency range 3.0���35, one finds delocalized
modes as implied by the high values of PR. The participation
ratio of the modes decreases with polydispersity for modes
of all frequencies �see Fig. 9�. Thus, the vibrations become
more localized with S. This means that as size disparity
among the particles increases, the system cannot sustain

propagating modes. It is interesting to note here that the large
size disparity among the particles also leads to the suppres-
sion of growth of dynamic heterogeneity with polydispersity
in supercooled liquids. Dynamic heterogeneity in super-
cooled liquids in its simplest sense means clusters of fast-
moving particles that move together for a certain amount of
time before they get decorrelated. When size disparity is
large, the particle motion gets decorrelated much faster and
hence the formation of dynamic clusters is suppressed at
higher polydispersity.

D. Boson peak

We plot the reduced density of states, g��� /�2 in Fig. 11
for three values of S, namely, S=0.10, 0.15, and 0.20. All the
three systems exhibit the boson peak feature viz. excess den-
sity of states as compared to the prediction of the Debye
model, g�����2. The boson peak feature is seen even when
we switch off the mass polydispersity �see Fig. 11�b�� imply-
ing that the size polydispersity effect alone can give rise to
the observed features. As seen from the figure, the intensity
of the boson peak, IBP increases with S for all the three
system sizes studied. However, there is no noticeable change
in the frequency of the Boson peak, �BP with S. The position
of the boson peak and its height show a strong system size
dependence. The peak height increases with system size and
the peak shifts to lower frequencies, the values of �BP being
3.5, 3.0, and 2.5 for N=256, 500, and 864, respectively.
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FIG. 10. �Color online� Individual particle displacements in a eigenmode. The index i=1, . . . . ,3N and j=1, . . . . ,N label the eigenmode
and the particle number, respectively. Data shown for N=256. �a� An eigenmode near the maximum frequency for S=0.10 system. �b� A
high-frequency eigenmode for S=0.10 system. �c� An eigenmode near the maximum frequency for S=0.20 system. �d� A high-frequency
eigenmode for S=0.20 system.
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Simulations of much larger system sizes are required to fully
understand the finite size effects. However the
polydispersity-dependence of the boson peak spectrum,
which is one of the main goals of the current study, is quali-
tatively the same for the three different system sizes studied
here.

The boson peak feature is seen even for the quenched
normal modes obtained from equilibrium configurations at
very high temperature �i.e., T�TMCT�, as shown in Fig. 12.
As T increases, the boson peak height increases but the peak
shifts to lower frequencies. Such a trend has been observed
in experiments as well �27,28�. However, the temperature-
dependence is weak here. The boson peak feature at high
temperatures shown in Fig. 12 is to be contrasted with the
observation made in an earlier paper �12� where the authors
studied the appearance of the boson peak in soft sphere bi-
nary mixture. In their study, the authors found that as T in-
creases above TMCT, the boson peak feature disappears. The
authors interpret the boson peak as a manifestation of an
underlying crossover of the parent liquid’s configuration
from a saddle dominated dynamics to a minima-dominated
behavior. However, the observation of boson peak at high
temperatures makes such an interpretation questionable.

The fragility of the current model polydisperse super-
cooled liquid decreases with polydispersity. This suggests an
inverse correlation between the fragility of the liquid and the
intensity of the boson peak. Such a correlation has actually
been observed previously for many liquids in experiments
�29� as well as in the simulation studies of model glass form-
ers �14�. If a correlation between the fragility and the inten-
sity of the boson peak exists, then it would mean that there is
also a link between the fast intrabasin vibrational dynamics
and the slow interbasin diffusive dynamics �see �30��. How-

ever, it appears hard to reconcile such a link with the Adam-
Gibbs paradigm as the latter predicts a relationship between
the relaxation time, 	 and the configurational entropy, Sc

�	�exp� A
TSc

��. Clearly, on the time scale typical of vibra-
tional dynamics �few picoseconds�, the system would not
have sampled sufficient configurations as would be necessary
to define Sc. Hence, it is difficult to understand the correla-
tion between the intensity of the boson peak and fragility
from this perspective.

It is interesting to note in this connection that Angell et al.
�31� have already suggested that the Boson peak can serve as
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FIG. 12. �Color online� Temperature dependence of the Boson
Peak. The data is shown for S=0.10 for different temperatures of
the parent liquid.
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FIG. 11. �Color online� Excess density of states �Boson Peak�, g���
�2 versus �. Data shown for different S with the temperature of the parent

liquid at T=0.50 and for system sizes, �a� N=256 �b� N=256 but without mass polydispersity �c� N=500 and �d� N=864. If we choose Argon
units, the frequency of boson peak is in the range �BP�1.1–3.5�1012 s−1.

SNEHA ELIZABETH ABRAHAM AND BIMAN BAGCHI PHYSICAL REVIEW E 81, 031506 �2010�

031506-6



a signature of configurational excitations of the ideal glass
structure, i.e., the topologically diverse defects of the glassy
solid state. This means that the boson peak is related to the
topographical features of the potential energy landscape and
is thus involved in determining the fragility of the liquid. In
the inherent structure formalism developed by Stillinger and
Weber �32,33�, the configuration space of the liquid is di-
vided into basins of local potential energy minima �or inher-
ent structures�. Within the harmonic approximation, valid at
sufficiently low temperatures, each basin is treated as a har-
monic well. In Fig. 13, we plot the quantity
N−1k=1

3N−3log�h�k� as a function of T for S=0.10 and S
=0.20 systems. This quantity is an indicator of the average
curvature of the basins �34�. Thus at higher polydispersity we
have flatter basins, which is consistent with the decrease of
fragility with S, as fragile liquids have rugged heterogeneous
landscape whereas strong liquids have smoother landscapes,
in accord with their constant activation energy predicted by
their Arrhenius behavior. The strong liquids in Angell’s
fragile/strong classification are usually network glass form-
ers like SiO2, GeO2 etc., and they appear to lie almost on the
opposite spectrum of our polydisperse liquid system. For a
polydisperse LJ liquid, the decrease in fragility with polydis-
persity is via dynamic facilitation by smaller particles. An
obvious manifestation of the dynamic facilitation is the size-
dependent glass transition temperature; as temperature is
lowered the larger particles freeze in first, followed by the
smaller ones. Therefore dynamic facilitation by polydisper-
sity implies that at higher polydispersity not only the system
has smaller barriers to diffusion but it also has more relax-
ation channels available to it.

Here it is interesting to note that Shirmacher et al. �9�
have shown that if a system of coupled harmonic oscillators
�with spatially fluctuating nearest-neighbor force constants
on a simple cubic lattice� is near the borderline of stability a

low-frequency peak appears in g��� /�2 as a precursor of the
instability. In their model system, when the amount of the
negative force constants becomes too large, the system be-
comes unstable and the boson peak feature shows up. Fur-
thermore, as the fraction of negative force constants in-
creases the peak intensity increases and the peak shifts
toward lower frequencies. Instantaneous normal mode analy-
sis shows �see again Fig. 2� that the fraction of unstable
modes increases with polydispersity which implies more
pathways for diffusion �16� at higher polydispersity.

E. Are the modes comprising the boson peak localized
or extended?

One of the key issues in the interpretation of the boson
peak is whether the modes comprising it are localized or
extended. In this study, we mainly use the participation ratio
and level spacing statistics to address this issue.

1. Participation ratio

Figure 9 shows that the modes at the frequency range
where boson peak appears are largely delocalized with high
values of participation ratio �PR
0.5�. For frequencies less
than �BP, the participation ratio drops suddenly. This sudden
drop of PR at low frequencies has been attributed to finite
size effects �18�. These low-frequency modes have been
shown to be extended, notwithstanding their low PR values.
However, note that the frequency of the boson peak coin-
cides with the frequency below which PR suddenly drops.
Furthermore, at the boson peak frequency, the PR decreases
with S indicative of a correlation between localization of
modes and boson peak intensity. These features are common
to all the three system sizes �N=256, 500 and 864� studied.

2. Level spacing statistics

An alternate way to check whether the boson peak is in-
deed associated with localized modes �or not� is by means of
level distance statistics �9,35�. The level spacing distribution,
P�s� for the random-matrix models is defined as the prob-
ability of finding the next-nearest-neighbor eigenvalue of the
spectrum to be at a distance s, i.e., s=

�i+1−�i

D , where D is the
mean level spacing. In the case of delocalized states, accord-
ing to the Gaussian orthogonal random-matrix ensemble, we
get

P�s� = As� exp�− Bs2� . �9�

For localized states, one gets a Poisson distribution,

P�s� = exp�− s� . �10�

This is due to the fact that the delocalized states show level
repulsion, whereas localized ones do not.

In order to characterize the level spacing distribution, we
use the Brody function P��s� to fit the computed distribution
�36,37�

P��s� = c1s� exp�− c2s�+1� , �11�

with
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FIG. 13. �Color online� Basin curvature as a function of tem-
perature for S=0.10 and S=0.20 systems.
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c2 = ���� + 2

� + 1
�	�+1

�12�

and

c1 = �� + 1�c2. �13�

In this function, � represents the degree of the distribution
P�s�: the value of −0.1���0.1 corresponds to a Poisson
distribution, while the value of 0.5���1.2 to a Wigner
distribution of the Gaussian orthogonal ensemble.

In Fig. 14, we have plotted the level spacing distribution
P�s� for the full eigenvalue spectrum along with the fit for
the Eq. �11�. The fit parameters are given in Table I. It ap-
pears that the level spacing distribution for both S=0.10 and
S=0.20 for the system size, N=256 agrees with Wigner’s
surmise with � value being 0.834 and 0.729, respectively.
However, at the larger system size studied �N=864�, � for

S=0.20 system is 0.345, indicating that the S=0.20 system
shows some mixture of both Poisson and Wigner distribu-
tion.

To see whether the modes comprising the boson peak are
localized or not, in Fig. 15, we plot the level spacing distri-
bution for frequencies near the boson peak �1.7���4.4�.
Also shown in the figure is the level spacing distribution for
the high frequencies ��
30.0� where the modes are truly
localized �See 9�. The fit parameters are given in Table II.
From the plot, it is clear that statistics at high frequencies
follow Poisson distribution as expected for localized states.
In the vicinity of the boson peak, however, we find a distri-
bution according to the Gaussian Orthogonal Ensemble,
which means that the corresponding states are delocalized. It
is interesting to note that even though the full eigenvalue
spectrum for S=0.20 system shows predominantly Poisson
behavior that is characteristic of localized modes, the modes
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S = 0.20

(a) N = 256

(b) N = 864

FIG. 14. �Color online� The level spacing distribution, P�s� for
the full eigenvalue spectrum. Data is shown for S=0.10 �circles�
and S=0.20 �triangles� systems at T=0.60. Upper panel is for sys-
tem size, N=256 and lower panel for N=864. The symbols are the
data points and the thick lines are fit to the data according to Eq.
�11�. Fit parameters are given in Table I.

TABLE I. The values of the fit parameters obtained by fitting
Eq. �11� to the full eigenvalue spectrum.

N S c1 � c2

256 0.10 5.287 0.834 3.277

256 0.20 15.44 0.729 9.312

864 0.10 7.031 0.872 4.276

864 0.20 15.178 0.345 8.917
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( 1.7 < ν < 4.4)
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(a) S=0.10

(b) S = 0.20

FIG. 15. �Color online� The level spacing distribution, P�s� for
the eigenvalues in the range 1.7���4.4 �near the boson peak�
shown in open symbols and for eigenvalues in the high-frequency
range ��
35.0� shown by filled symbols. Data is shown for �a� S
=0.10 and �b� S=0.20 at T=0.60 and N=864. The symbols are the
data points and the thick lines are fit to the data according to Eq.
�11�. Fit parameters are given in Table II.

TABLE II. The values of the fit parameters obtained by fitting
Eq. �11� to the eigenvalues near the boson peak and for those in the
high-frequency range �where modes are truly localized�.

� S c1 � c2

Near �BP 0.10 1.537 1.001 0.765

Near �BP 0.20 1.572 1.037 0.779

�
30.0 0.10 6.124 0.839 3.842

�
30.0 0.20 2.847 −0.095 2.579
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near boson peak for this system follow the Wigner surmise of
delocalized modes.

Although both the participation ratio and the level spacing
statistics of the finite size systems studied here seem to indi-
cate that these modes are delocalized �it is likely that these
modes are delocalized over a few hundred particles�, it is
unlikely that these modes are delocalized over an entire mac-
roscopic system. Note that participation ratio decreases with
system size, implying increasing localization, which is also
reflected in the level spacing distribution. The latter becomes
more Poisson-like with increase in system size. The sudden
drop of participation ratio at the boson peak frequency indi-
cates that the low-frequency vibrations are quasilocalized vi-
brations �QLVs�. The QLVs are the local low-frequency vi-
brations involving several atoms that are bilinearly coupled
to the sound waves �38�. Parshin et al. �39� has proposed a
mechanism for boson peak formation based on the phenom-
enon of vibrational instability arising from the interaction of
the QLVs with the high-frequency vibrations. According to
this theory the vibrational instability of weakly interacting
harmonic oscillators are responsible for both the formation
of two-level systems and the boson peak in reduced density
of states.

IV. CONCLUDING REMARKS

Let us first summarize the main results of this paper. We
have computed the vibrational density of states in a polydis-
perse Lennard-Jones system. Polydispersity is shown to have
a significant effect on the vibrational density of states. In-
crease in the polydispersity leads to an increase in the local-

ized high-frequency modes. There is a softening of vibra-
tional modes with polydispersity manifested in the
population shift in modes with frequencies above the maxi-
mum in g��� to that below the maximum. The reduced den-
sity of states, g��� /�2 exhibits the boson peak feature. The
latter is seen to exist even for high-temperature liquid con-
figurations and shows a rather narrow sensitivity to tempera-
ture. The results clearly show a correlation between the
height of the BP and the strength of the liquid.

The observed weak temperature-dependence of the boson
peak seems to suggest the absence of any temperature medi-
ated phase transition in the stationary points of the energy
landscape from a saddle dominated to a minima-dominated
regime. We find that while the modes comprising the BP are
largely delocalized, there is a sharp drop in the PR of the
modes that exist just below the BP. We also find a correlation
between localization of modes and boson peak intensity.
These results suggest that the low-frequency modes could be
quasilocalized vibrations. All these evidences do suggest a
close relation between boson peak and unstable modes of the
system, the latter being responsible for the facilitation of
relaxation at larger polydispersity as well as the observed
softening of vibrational modes with polydispersity. Possible
candidates of the modes populating boson peak are therefore
modes that are connected with two-level systems �39� but in
a strongly correlated system like a glass or a supercooled
liquid, a transition in a two-level system may involve partici-
pation of a large number of particles, and this could explain
the relatively large value of the participation ratio. These
modes populate the saddles of the energy landscape �12�, as
also evident from INM analysis.
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